Neutron Powder Diffraction on $\alpha-\mathrm{TI}_{4} \mathrm{CrI}_{6}$ and $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$

II. W. ZANDBERGEN
Gorlaeus Laboratories, University of Leiden, P.O. Box 9502 , 2300 RA Leiden, The Netherlands

Received September 22, 1980; in final form December 4, 1980

Abstract

$\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}(a=9.132(1), c=9.667(1) \AA, Z=2, P 4 / m n c$ at 293 K$)$ adopts a distorted $\mathrm{Tl}_{4} \mathrm{HgBr}_{6}$ structure. In $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ there occurs a random distribution of Jahn-Teller distorted octahedra which are elongated perpendicular to the c axis. Between 77 and 4.2 K a phase transition occurs. In $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ $(a=12.941(3), b=12.596(3), c=9.602(2) \AA, Z=4, C c \mathrm{~cm}$ at 4.2 K$)$ the directions of elongation of the octahedra are ordered. The structure is very much related to that of $\alpha-\mathrm{T}_{4} \mathrm{CrI}_{6}$. A three-dimensional magnetic ordering takes place at $2.7(2) \mathrm{K}$. The magnetic space group at 1.2 K is $C_{I} 22^{\prime} 2^{\prime}$. The magnetic moments $\left(\mathbf{3 . 4 8 (6)} \mu_{\mathrm{B}}\right)$ are parallel to (001) and have an angle of $41(9)^{\circ}$ with the a axis. Four magnetic sublattices are present, forming two independent magnetic lattices which have no interaction due to the antiparallel ordering.

Introduction

In an earlier paper (1) the determination of the crystal structure of $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ by means of X-ray single-crystal diffraction was reported. Strong evidence was found for the occurrence of Jahn-Teller deformed octahedra in this phase. The octahedra are elongated perpendicular to the c axis; the direction of elongation is distributed randomly over the two possibilities. Jouini et al. (2) reported also the structure of α $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$; however they did not account for the Jahn-Teller effect. Due to a coupling of the Jahn-Teller deformations a complete ordering of the elongation directions is expected to occur at lower temperature. In this paper the crystal structure of $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ and its magnetic structure at 1.2 K is reported together with magnetic measurements on a powder of $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$.

Experimental

The samples of $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ used for neutron diffraction and magnetic measurements were prepared by melting and annealing for 2 weeks at $350^{\circ} \mathrm{C}$ a stoichiometric mixture of the binary compounds. The binary compounds were purified by distillation (TII) or sublimation $\left(\mathrm{CrI}_{2}\right)$. Since $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ is very hygroscopic, all manipulations were carried out in a dry glovebox in argon.

Neutron powder diffraction was done at 293, 77, 4.2, and 1.2 K at the HFR reactor at Petten (The Netherlands) using $\lambda=$ 2.5783(1) \AA with 30^{\prime} collimation in the angular range $4^{\circ}<2 \theta<140^{\circ}$. No absorption correction was applied. The coherent scattering lengths (3) used are $b(\mathrm{Tl})=0.89$, $b(\mathrm{Cr})=0.352$, and $b(\mathrm{I})=0.53$, all in units of $10^{-12} \mathrm{~cm}$. Magnetic form factors were taken from Watson and Freeman (4). For
the refinements, the profile refinement method of Rietveld (5) was used.

Magnetic measurements were carried out by means of a vibrating sample magnetometer with fields up to 56 kOe (6).

Refinements with the Neutron Diffraction Data

$\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ (293 K)
The refinement was started with the positions of $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ from (1). To account for the random distribution of elongated octahedra $I(2)$ is distributed over two equally occupied positions. Refinements in space group $P 4 / m n c$ led to convergence at

$$
\begin{aligned}
R(\text { total }) & =\sum_{i} \mid I_{i}(\mathrm{obs}) \\
& -(1 / c) I_{i}(\text { calc }) \mid / \sum_{i} I_{i}(\mathrm{obs})=0.037
\end{aligned}
$$

and
$R($ profile $)=\left\{\sum_{j} w_{j}\left[y_{j}(\mathrm{obs})\right.\right.$
$-(1 / c) y_{j}($ calc $\left.\left.)\right]^{2} / \sum_{j} w_{j} y_{j}(\text { calc })^{2}\right\}^{1 / 2}=0.096$
with a nondivided $\mathrm{I}(2)$ ion and $R($ total $)=$ 0.035 and R (profile) $=0.094$ with a divided I(2) ion. In the refinement with the divided I(2) ion the shifts of the two parts were negatively coupled. The results of these refinements are given in Table I.
$\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ (77 K)
The diffraction diagram recorded at liquid nitrogen temperature is almost identical to that of 293 K , showing the phase transition $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6} \rightarrow \beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ to take place below this temperature. Refinements similar to the ones of the recording at 293 K resulted in $R($ total $)=0.059$ and $R($ profile $)=$ 0.092 and R (total) $=0.052$ and $R($ profile $)=$ 0.085 for the refinements with a nondivided and a divided $\mathrm{I}(2)$ ion, respectively. The

TABLE I
Positional and Isotropic Thermal Parameters
(b) of $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ AT 293 K and 77 K and of $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ AT 4.2 And $1.2 \mathrm{~K}^{a}$

	x	y	z	b
293 K				
$a=9.132(1), c=9.661(1) \AA$				
TI	0.1449(2)	0.3551(2)	0.25	3.4 (1)
Cr	0	0	0	$2.0(4)$
I(1)	0	0	0.2839(7)	1.7(2)
I(2)	0.3049(4)	$0.1371(6)$	0	2.6(1)
I(2a)	$0.3219(17)$	$0.1436(19)$	0] $1.9(2)$
I(2b)	$0.2879(17)$	$0.1307(19)$	0	$\int 1.9(2)$
77 K				
$a=9.013(1), b=9.580(1) \AA$				
Tl	$0.1445(2)$	0.3555(2)	0.25	1.5(1)
Cr	0	0	0	$0.6(4)$
I(1)	0	0	0.2871(6)	0.3(2)
I(2)	0.3032(4)	$0.1390(5)$	0	0.8(1)
I(2a)	$0.3233(11)$	$0.1517(11)$	0	$\}-0.1(1)$
I(2b)	$0.2831(11)$	$0.1263(11)$	0	$\int-0.1(1)$
$\begin{gathered} a=12.941(3), b=12.596(3), c=9.602(2) \AA, \\ b(\text { overall })=0.6(1) \AA^{2} \end{gathered}$				

Tl(1)	$0.1406(5)$	0	0.25
$\mathrm{Tl}(2)$	0	0.3524(5)	0.25
Cr	0.25	0.25	0
I(1)	0.25	0.25	0.2896(12)
I(2)	0.3268(9)	0.0345(9)	0
I(3)	0.0191(11)	0.1692(10)	0
	$\begin{gathered} a=12.927(3), b=12.584(3), c=9.593(2) \AA, \\ b(\text { overall })=0.6(1) \AA^{2} \end{gathered}$		
Tl(1)	0.1414(6)	0	0.25
Tl(2)	0	0.3522(6)	0.25
Cr	0.25	0.25	0
I(1)	0.25	0.25	0.2901(13)
I(2)	$0.3257(9)$	$0.0348(9)$	0
I(3)	0.0189(12)	$0.1692(10)$	0

Magnetic moment: $\mu_{x}=2.5(5) \mu_{y}=2.1(6)$

$$
\mu_{\text {TOTAL }}=3.48(6) \mu_{\mathrm{H}}
$$

${ }^{a} I(2 a)$ and $I(2 b)$ represent the divided parts of $I(2)$ as discussed in the text. The positions of the other ions are equal for both refinements.
results are given in Table I. The observed and calculated profiles are depicted in Fig. 1 A .
$\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ (4.2 K)
The diffraction diagram recorded at 4.2 K

Fig. 1. The observed and calculated profiles of (A) $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ at 77 K and $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ at (B) 4.2 and (C) 1.2 K . The indices of most of the reflections are given.
shows several peaks to be split up. The peaks could be indexed with a C-centered orthorhombic unit cell with axes of about $a 2^{1 / 2}, a 2^{1 / 2}, c ; a$ and c being the axes of the tetragonal unit cell of $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$. The JahnTeller deformation of the high-temperature phase suggests the space group Cccm . Besides refinement in this space group refinement was also done in the space groups Ccc $2(R($ profile $)=0.122)$ and C222 (R (profile) $=0.123$), yielding R values which are not significantly lower with respect to those of the refinement in space group $C c c m$. It is concluded that the space group of $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ is $C c c m$ also because the distortion of the octahedra is similar to the distortion in $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$. The final R values are R (total) $=0.049$ and R (profile) - 0.124 . The results of the refinement are shown in Fig. 1B and listed in Table I.

$$
\beta-\mathrm{Tl}_{1} \mathrm{CrI}_{6}(1.2 \mathrm{~K})
$$

The diffraction pattern recorded at 1.2 K contains a number of magnetic reflections, which can be indexed with an $a, b, 2 c$ unit cell, a, b, and c being the axes of the nuclear unit cell of $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$.

No magnetic reflections with $h+k=2 n$ occur, suggesting the magnetic space lattice type to be C_{I}. This yields the magnetic space groups $C_{I} 222$ and $C_{I} 22^{\prime} 2^{\prime}(7)$ with the magnetic moments oriented perpendicular and parallel to the (001) plane, respectively, due to the symmetry. Both models were refined. The R values and the fits showed the magnetic movements to be parallel to the (001) plane with an angle of $41(9)^{\circ}$ with the a axis. The standard deviation of the angle is high because the a and the b axis are almost equal. The final R values are $R($ profile $)=0.117$ and $R($ total $)=$ 0.059 , which can be divided into a nuclear part, R (nuclear) $=0.057$, and a magnetic part, R (magnetic) $=0.078$. The observed and calculated profiles are shown in Fig. 1C
and the results of the refinements are given in Table I.

Magnetic Measurements

On a powder sample of $\mathrm{Tl}_{4} \mathrm{CrI}_{6} M$ vs H measurements at 2 K up to 56 kOe and χ vs T measurements in the temperature range $2-100 \mathrm{~K}$ were carried out. No field dependence of $d M / d H$ was found. The $1 / \chi$ vs T of $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ is depicted in Fig. 2. The threedimensional transition temperature is determined to be $2.7(2) \mathrm{K}$ for $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$, at which temperatures $d \chi / d T$ is maximal. From the linear part of $1 / \chi$ vs T, θ, and $\mu(\mathrm{eff})$ were found to be $-7(2) \mathrm{K}$ and $4.5(2) \mu_{\mathrm{B}}$. A deviation from the linear temperature dependence of $1 / \chi$ is found to start at about 6 K .

Discussion

The crystal structure of $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ is adopted (except for the Jahn-Teller deformation) by many $A_{4} B \mathrm{I}_{6}$ compounds with A being In or Tl . Although the K^{+}and Rb^{+} ions have similar radii, no $\mathrm{K}_{4} B \mathrm{I}_{6}$ or $\mathrm{Rb}_{4} B \mathrm{I}_{6}$ compounds exist. The structure of α $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ is probably favored by the In and Tl compounds because of the lone pairs of the In^{+}and Tl^{+}ions.

Similar to the results obtained for the refinements of the X-ray single-crystal diffraction data (1), significantly lower R values for the neutron diffraction recording at 293 and 77 K are obtained for a model with a distribution of the $I(2)$ ions over two equally occupied positions. The effect is greater at 77 K , as expected, since the isotropic thermal parameter, which can partly account for the division of the I ion, is much smaller at this temperature. By this division, elongated octahedra are obtained. The $\mathrm{Cr}-\mathrm{I}$ distances of both models are listed in Table II. As can be seen from this table the $\mathrm{Cr}-\mathrm{I}$ distances are similar in α $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ and $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$. X-Ray single-crystal

TABLE II
The Cr-I Distances in $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ at 293 and 77 K and $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ at 4.2 and I. 2 K

	293 K		77 K	4.2 K	1.2 K
$\mathrm{Cr}-\mathrm{I}(1)$	$2.744(6)$	$2.750(6) 2 \times$	$\mathrm{Cr}-\mathrm{I}(1)$	$2.78(1)$	$2.78(1) 2 \times$
$\mathrm{Cr}-\mathrm{I}(2)$	$3.053(4)$	$3.006(4) 4 \times$	$\mathrm{Cr}-\mathrm{I}(2)$	$289(1)$	$2.89(1) 2 \times$
$\mathrm{Cr}-\mathrm{I}(2 \mathrm{a})$	$3.222(16)$	$3.219(10)$	$\mathrm{Cr}-\mathrm{l}(3)$	$3.16(1)$	$3.16(1) 2 \times$
$\mathrm{Cr}-\mathrm{I}(2 \mathrm{~b})$	$2.884(16)$	$2.794(10)$			

diffraction on $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ at 293 K (/) resulted in similar and more significant results. X-Ray single-crystal diffraction on $\alpha-\mathrm{CsCrCl}_{3}$ and $\alpha-\mathrm{CsCrI}_{3}$ (8) has also given evidence for the existence of elongated octahedra in these phases, which is, furthermore, in accordance with the fact that no difference is observed in the ligand field spectra of CsCrCl_{3} above or below the phase transition (8,9). It is concluded that in $\alpha-\mathrm{Tl}_{4} \mathrm{Crl}_{5}$ elongated octahedra do occur in the high-temperature phase. An oscillation of $\mathrm{I}(2)$ between the two positions, with a large probability of finding $\mathrm{I}(2)$ at one of these positions, will probably occur. The structure of $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ is depicted in Fig. 3.

Between 77 and 4.2 K an ordering of the elongated octahedra takes place. Refnements on the diffraction data recorded at 4.2 K showed the space group of $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ to be Cccm . The structure of the low-temperature phase is very similar to

Fic. 2. 1/X vs T curve of $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ measured in a field of 1.1 kOe .
the structure of $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$. The only difference is an ordering of the directions of elongation of the octahedra, which results in a difference in the axes a and b. The structure of $\beta-\mathrm{TL}_{4} \mathrm{CrI}_{6}$ is depicted in Fig. 4.

The magnetic structure of $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ at 1.2 K is shown in Fig. 5. The magnetic lattice can be divided into four sublattices, $\mathbf{M}_{1}, \mathbf{M}_{2}, \mathbf{M}_{3}$, and \mathbf{M}_{4} (see Fig. 6); there is no effective exchange interaction between the Cr^{2+} ions forming the sublattices \mathbf{M}_{1} and \mathbf{M}_{2} and the Cr^{2+} ions forming \mathbf{M}_{3} and \mathbf{M}_{4}. Five types of superexchange interactions between nearest and next nearest neighbor Cr^{2+} ions via two I^{-}ions exist, as is shown in Fig. 6. The interaction between the sublattices $\mathbf{M}_{1}, \mathbf{M}_{2}$ and $\mathbf{M}_{3}, \mathbf{M}_{4}$ will be determined by J_{4} and $J_{5} . J_{5}$ has an exchange path via a half-filled d orbital of one Cr^{2+} ion and an empty d orbital of the other Cr^{2+} ion. Goodenough (10) predicts that this yields a

Fig. 3. A (0001) projection of the structure of α $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$. The black dots represent the positions of the divided $\mathrm{I}(2)$ ion at 77 K .

Fig. 4. A (001) projection of the structure of β $\mathrm{T}_{4} \mathrm{CrI}_{6}$. The representation of the ions is given in Fig. 3. The dashed lines represent the axes of the unit cell of $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{8}$.
weakly ferromagnetic exchange interaction. J_{4} has an exchange path via two empty orbitals and is predicted to be weakly antiferromagnetic. Further, J_{1}, J_{2}, and J_{3} have exchange paths via two empty, two empty, and two half-filled d orbitals, respectively, and are expected to be antiferromagnetic.

Fig. 5. The magnetic structure of $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$. The magnetic moments make an angle of $41(9)^{\circ}$ with the a axis.

Fig. 6. The definition of the magnetic sublattices \mathbf{M}_{i} ($i=1,4$) and the exchange interactions $J_{j}(j=1,5)$.

Because of its geometry J_{1} (a $180^{\circ}-180^{\circ}$ exchange path) is expected to be relatively strong.

For a more simple magnetic system, a body-centered tetragonal lattice where $J_{2}=$ J_{3} and $J_{4}=J_{5}$ the magnetic ordering phase diagram is calculated by Smart (11). The magnetic ions in $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ form such a lattice. Because of the special relations between J_{1}, J_{2}, and J_{4} the three-dimensional phase diagram can be simplified to a two-dimensional $\beta_{1}-\beta_{2}$ phase diagram (see Fig. 7), where β_{1}, is $J_{1} /\left|J_{4}\right|$ and β_{2} is $J_{2} /\left|J_{4}\right|$. For $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ the magnetic ordering phase diagram is five-dimensional. The $\beta_{1}-\beta_{2}$ phase diagram for $J_{2}=J_{3}$ and $J_{4}=-J_{5}$ is depicted in Fig. 8. When $J_{4}=-J_{5}$ a C_{c} magnetic space lattice type is obtained instead of a spiral structure which occurs when $J_{4} \neq-J_{5}$. With respect to the tetragonal system, the magnetic ordering type $A F_{3}$ is stable in a larger area due to $J_{4}=$ $-J_{5}$. With $J_{2}=J_{3}$, a deviation from $J_{4}=$ $-J_{5}$ leads to a shift of the phase boundaries in the direction of those in Fig. 7. Using the magnetic ordering phase diagrams (Figs. 7 and 8), the magnetic structure of $\beta-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$ suggests J_{1}, J_{2}, and J_{3} to be antiferromagnetic and J_{1} to be relatively strong. This is

Fig. 7. Magnetic ordering phase diagram for a bodycentered tetragonal lattice of the magnetic ions as for instance for $\alpha-\mathrm{Tl}_{4} \mathrm{CrI}_{6}$. The spin orientations given in the figure for F or $A \mathrm{~F}_{1}$ and for Spiral are obtained with $J_{4}+J_{5}$ being ferromagnetic.
in accordance with the predictions for these exchange interactions discussed above.

It is worth noting that whereas $\mathrm{In}_{4} \mathrm{CrI}_{6}$ (12) $\left(\theta=-8(2) \mathrm{K}, \mu(\right.$ eff $)=4.6(2) \mu_{\mathrm{B}}, T_{\mathrm{c}}=$ $2.9(2) \mathrm{K}$) shows a deviation from a linear temperature dependence at about 6 K , similar to $\mathrm{Tl}_{4} \mathrm{CrI}_{6}$, the almost isostructural (tetragonal, without a Jahn-Teller deformation) compounds $\mathrm{Tl}_{4} \mathrm{MnI}_{6}(\theta=5(1) \mathrm{K}$, $\mu($ eff $\left.)=5.8(1) \mu_{B}\right)$ and $\mathrm{Tl}_{4} \mathrm{FeI}_{6}(\theta=17(2) \mathrm{K}$, $\mu($ eff $)=5.8(1) \mu_{\mathrm{B}}$) (I2) show no deviation from the linear temperature dependence down to 2 K . For a cubic system, more advanced calculations ($/ 1$) predict a drop in the transition temperature when a phase boundary is approached. This might be the case for $\mathrm{Tl}_{4} \mathrm{MnI}_{6}$ and $\mathrm{Tl}_{4} \mathrm{FeI}_{6}$.

Acknowledgments

The author wishes to thank Dr. L. J. de Jongh, Dr. D. J. W. IJdo, and Dr. R. A. G. de Graaff for helpful

Fig. 8. Magnetic ordering phase diagram for β $\mathrm{T}_{4} \mathrm{CrI}_{6}$ with $J_{2}=J_{3}$ and $J_{4}=-J_{5}$.
discussions and a critical reading of the manuscript, and Mr. J. Strang of the Energieonderzoek Centrum Nederland for performing the neutron diffraction experiments.

References

1. H. W. Zandbergen, Acta Crystallogr. Sect. B 35, 2852 (1979).
2. N. Jouini, L. Guen, R. Marchand, and M. Tournoux, Ahn. Chim. Fr. 5, 493 (1980).
\therefore G. E. Bacon, Compilation, Neutron Diffraction Newsletter, ed. W. B. Yelon, May 1977.
3. R. E. Watson and A. J. Freeman, Acta Crystallogr. 14, 27 (1961).
4. H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969).
5. H. T. Witteveen, Thesis, Leiden, The Netherlands (1973).
6. W. Opechowski and R. Guccione, in "Magnetism," Vol. IIA, Academic Press, New York (1963).
7. W. J. Crama and H. W. Zandbergen, Acta Crystallogr., in press.
8. P. Koehler, Thesis, Marburg/Lahn, West Germany (1976).
li. J. B. Goodenough, "Magnetism and the Chemical Bond," Interscience, New York (1963).
I/. J. S. Smart, "Effective Field Theories of Magnetism," Saunders, Philadelphia (1966).
9. H. W. Zandbergen, Thesis, Leiden, The Netherlands (1981).
